Ethane. EIA estimated the thermal conversion factor to be 2.783 million Btu per barrel, based on data for enthalpy of combustion from the National Institute of Standards and Technology, *NIST Chemistry WebBook, NIST Standard Reference Database Number 69,* 2018; and data for density of liquids at 60 degrees Fahrenheit and equilibrium pressure from the American Petroleum Institute.

Ethylene. EIA adopted the thermal conversion factor of 2.436 million Btu per barrel (0.058 million Btu per gallon) as published in the Federal Register EPA; 40 CFR part 98; e-CRF; Table C1; April 5, 2019. The ethylene higher heating value is determined at 41 degrees Fahrenheit at saturation pressure.

Hydrocarbon Gas Liquids. • 1949–1966: EIA used the 1967 factor. • 1967 forward: Calculated annually by EIA as the average of the thermal conversion factors for all hydrocarbon gas liquids consumed (see Table A1) weighted by the quantities consumed. The component products of hydrocarbon gas liquids are ethane, propane, normal butane, isobutane, natural gasoline (pentanes plus), and refinery olefins (ethylene, propylene, butylene, and isobutylene). For 1967–1980, quantities consumed are from EIA, Energy Data Reports, "Petroleum Statement, Annual." For 1981 forward, quantities consumed are from EIA, *Petroleum Supply Annual*.

Hydrogen. EIA estimated a thermal conversion factor of 323.6 Btu per standard cubic foot (at 60 degrees Fahrenheit and 1 atmosphere), based on data published by the National Research Council and National Academy of Engineering, in Appendix H of *The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs*, 2004. EIA also assumed a thermal conversion factor of 6.287 million Btu per residual fuel oil equivalent barrel or equal to the thermal conversion factor for **Residual Fuel Oil**.

Isobutane. EIA estimated the thermal conversion factor to be 4.183 million Btu per barrel, based on data for enthalpy of combustion from the National Institute of Standards and Technology, *NIST Chemistry WebBook, NIST Standard Reference Database Number 69,* 2018; and data for density of liquids at 60 degrees Fahrenheit and equilibrium pressure from the American Petroleum Institute.

Isobutylene. EIA estimated the thermal conversion factor to be 4.355 million Btu per barrel, based on data for enthalpy of combustion from the National Institute of Standards and Technology, *NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2018*; and data for density of liquids at 60 degrees Fahrenheit and equilibrium pressure from the American Petroleum Institute.

Jet Fuel, Kerosene-Type. EIA adopted the Bureau of Mines thermal conversion factor of 5.670 million Btu per barrel for "Jet Fuel, Commercial" as published by the Texas Eastern Transmission Corporation in the report *Competition and Growth in American Energy Markets 1947–1985*, a 1968 release of historical and projected statistics.

Jet Fuel, Naphtha-Type. EIA adopted the Bureau of Mines thermal conversion factor of 5.355 million Btu per barrel for "Jet Fuel, Military" as published by the Texas Eastern Transmission Corporation in the report *Competition and Growth in American Energy Markets* 1947–1985, a 1968 release of historical and projected statistics.

Kerosene. EIA adopted the Bureau of Mines thermal conversion factor of 5.670 million Btu per barrel as reported in a Bureau of Mines internal memorandum, "Bureau of Mines Standard Average Heating Values of Various Fuels, Adopted January 3, 1950."

Lubricants. EIA adopted the thermal conversion factor of 6.065 million Btu per barrel as estimated by the Bureau of Mines and first published in the *Petroleum Statement, Annual, 1956*.

Miscellaneous Products. EIA adopted the thermal conversion factor of 5.796 million Btu per barrel as estimated by the Bureau of Mines and first published in the *Petroleum Statement, Annual, 1956*.

Motor Gasoline Blending Components. • 1949–2006: EIA adopted the Bureau of Mines thermal conversion factor of 5.253 million Btu per barrel for "Gasoline, Motor Fuel" as published by the Texas Eastern Transmission Corporation in Appendix V of *Competition and Growth in American Markets 1947-1985*, a 1968 release of historical and projected statistics. • 2007 forward: EIA adopted the thermal conversion factor of 5.222 million Btu per barrel (124,340 Btu per gallon) for gasoline blendstock from U.S. Department of Energy, Argonne National Laboratory, "The Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies Model" (GREET), version GREET1_2023, December 2023.

Motor Gasoline Exports. • 1949–2005: EIA adopted the Bureau of Mines thermal conversion factor of 5.253 million Btu per barrel for "Gasoline, Motor Fuel" as published by the Texas Eastern Transmission Corporation in Appendix V of *Competition and Growth in American Energy Markets 1947–1985*, a 1968 release of historical and projected statistics.
• 2006 forward: Calculated by EIA as the annual quantity-weighted average of the conversion factors for gasoline

blendstock and the methyl tertiary butyl ether (MTBE) blended into motor gasoline exports. The factor for gasoline