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Modeling Regional Electricity Generation 
 

Abstract 
 
In recent years, natural gas use in the electric power sector has been on the rise.  As a 
result, impacts of power generation from natural gas plants on the very tight U.S. natural 
gas market are becoming more pronounced. The ability to predict gas plant dispatching 
decisions can help analysts understand natural gas market conditions and the direction of 
price changes.  Theoretically, dispatching decisions should be based on variable costs.  
However, considerations such as costs and accessibility of transmission lines, 
transmission and distribution losses, long-term contracts, distance to load centers, 
availability of fuels, ability to quickly ramp up or down generation, and cost and 
efficiency of available technologies, all play very important roles in power dispatching. 
 
This paper has two objectives: 1. Present a model built on historical generation, capacity, 
and sales data to predict monthly dispatching of coal and natural gas power plants.  2. 
Demonstrate that the same modeling framework can be used to simulate the effects of 
capacity loss in a sub-region on regional generation patterns and trade flow.  Preliminary 
model results show that the model can produce good projections.  However, the model 
can be further improved to capture fuel switching for dual fired oil- gas generators. 

1. Introduction 
 
The United States Energy Information Administration (EIA) publishes a Monthly Short 
Term Energy Outlook.  The publication, as its name suggests, covers EIA’s view of short 
term energy markets and likely development in demand and supply of oil, gas, and 
electric power.  One of the challenges in this publication is making consistent projections 
of natural gas use in the electric sector. It is important because an increase in power 
sector demand for natural gas can be a burden to the already tight U.S. gas market.  EIA 
needs to improve its capability in assessing the impacts of higher demand for power on 
gas usage, overall demand for natural gas, the amount of gas injected into storage, and 
gas prices. 
 
In meeting this challenge, EIA has completed a regional electricity dispatching model for 
the projection of power generation from coal and natural gas plants.  The model divides 
the U.S. into three major regions, East, West, and Texas.  One major region, West, has 
three sub-regions, the other, East, has nine sub-regions.  The model has explicit demand 
and supply representations developed from historical data; it is structured to serve as a 
short term forecasting tool as well as an analytical framework for performing “what-if” 
simulations.   
 
Section 2 discusses the modeling methodology.  Section 3 describes the data sources and 
data transformation performed for meeting modeling requirement. Section 4 reports the 



performance of the model.  Section 5 demonstrates the capability of the model in 
answering what-if questions.  Section 6 summarizes the findings. 

2. The EIA Regional Electricity Dispatching Model   
 
2.1 Choice of Regions 
 
The EIA regional electricity dispatching model divides the lower-48 states into three 
regions: Eastern, Western, and Texas.  This division uses nine census regions plus four 
states: California, Florida, New York, and Texas. (See Figure 1) The selection of regions 
and sub-regions takes into consideration data availability, effects of trade within each 
region, and ease of use and maintenance for regular monthly dissemination.  The general 
model structure can accommodate more regions for contingency analysis provided they 
are aggregated up from the state level. 
  
The Eastern region includes nine sub-regions: 
 

• New England  
• Mid Atlantic minus New York 
• East North Central 
• West North Central 
• South Atlantic minus Florida 
• East South Central 
• West South Central minus Texas 
• Florida 
• New York 
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The Western region includes three sub-regions: 
 

• Mountain  
• Pacific minus California 
• California 

 
Texas, separated out from West South Central, is a region by itself in the regional 
electricity dispatching model. 
 
2.2 Model Structure and solution algorithm 
 
This section describes the construction of supply curves, load curves, and the solution 
algorithm for the electricity generation model. 
 
2.2.1 Regional supply curves  
 
Conventional definition of a supply curve depicts the relationship between price and 
quantity supplied. Intuitively, dispatching decisions should be based on variable costs of 
power plants.  A plant with the lowest variable cost should be dispatched first; as demand 
increases, the next lowest cost plant will supply power.  In reality, dispatching decisions 
may depend on the least system cost instead of least variable cost because of spatial 
considerations and institutional factors; they may include costs and accessibility of 
transmission lines, supply contracts, distance to load centers, transmission and 
distribution losses, and availability of fuels. These considerations may play as important 
roles in actual power dispatching as the fuel cost and operating efficiency of available 
technologies.   
 
Data on supply contracts, distance of a power plant to the load center, transmission 
distribution losses, and transmission tariff are not easily available.  As a result, the 
construction of short run supply curves for coal, natural gas, residual fuel, and diesel fuel, 
relies on observed dispatching patterns instead of costs.  The building block of supply 
curves is the power plant capacity utilization rate. For example, a plant with 1000 mega 
watts of coal capacity can generate 744,000 megawatt hours of electricity in July 
(1000*24*31).  Reported net generation by the plant divided by 744,000 equals 
utilization rate.   In each region, fossil plants are sorted by utilization rates and assigned 
to 10 bin numbers. Plants with utilization rates greater than or equal to 90% are assigned 
to bin number 1. Plants with utilization rate greater than or equal to 80% and less than 
90% are assigned to bin number 2.  All fossil plants are assigned one bin number.  Table 
1 shows the bin number, capacity in each bin, and cumulative capacity of coal and natural 
gas plants in Texas in July 2005.   
 
The bin number and cumulative capacity are used to create supply curves, which embody 
capacity and historical dispatching order.  We choose natural log of cumulative capacity 
as dependence variable to improve the fit and avoid negative fitted values. The supply 
curves for coal, gas, diesel fuel, and residual fuel take two functional forms. 
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The coal supply curve takes the functional form: 
 

Log(cumulative coal) = C(0) + C(1) * (1/bin)  
 
 Where C(0) and C(1) are estimated estimate coefficients  
 
The gas, diesel, and residual fuel supply curves take the functional form: 
 

Log(cumulative XXX) = C(0) + C(1) * bin + C(2) * bin2

 
Where XXX=gas, diesel fuel, or residual fuel 

  C(0), C(1), and C(2) are estimated coefficients   
 
Availability of coal power plants takes into consideration routine maintenance and 
planned outages.  The data EIA collected show that most power plant operators reported 
use of small amounts of natural gas, diesel, or residual fuel; these observed data indicate 
that these coal power plants are not 100% available.  An availability factor for each 
region is used to reflect this fact to improve model performance.  The availability factor 
is 0.93, 0.94, and 0.96 for Easter Region, Western Region, and Texas, respectively. 
 
Figure 2 shows the coal and gas supply curves.  The right vertical axis is the natural log 
of cumulative capacity and the horizontal axis is the bin number corresponding to the 
cumulative capacity. For the coal equation, the adjusted R-squared is about 0.96.   For the 
natural gas equation, the adjusted R-squared is about 0.95.  Note that the horizontal axis 
shows 12 bin numbers.  Number 11 and 12 are added to extend the flat portion of the 
supply curves. It is intended to enhance the fitted curves to conform to actual available 
capacity. 
 
For the model, there are thirteen sets of supply curves for fossil plants for each month; 
one set for each sub-region.  These monthly supply curves depict what plant operators 
will dispatch in response to variable demand levels in a typical day.  
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Figure 2: Texas July 2005 Coal and Gas Supply Curve

 
These historical monthly supply curves derived from monthly data for a single year 
capture only seasonal dispatching patterns. Dispatching gas power plants can be 

fluenced by the prices of residual and diesel fuels.   There are two aspects in fuel 

emand for electricity changes by hour, by day, and by month. This fluctuation in 
 shapes dispatching patterns. Figure 3 shows 

e average 24-hour load shape of power demand in California in July 2005. Demand is 

in
switching.  First, if the relative price of gas is significantly below prices of residual fuel 
and diesel, utilization rate of natural gas plants could rise if the savings in “system cost” 
is positive.  Second, for dual fueled gas/resid or gas/diesel plants, plant operators can 
switch if fuel cost savings from switching is positive.  To capture the fuel choice over 
time, we pool the bin numbers and capacity data from 2002 through 2005 and introduce a 
relative price variable to the supply curve of gas and oil. 
 
2.2.2 Regional demand for electric power 
 
D
demand determines dispatching needs and
th
lowest around 4 AM, ramps up to peak around 4 PM, and then ramps down in the 
evening.  Changes in hourly demand determine hourly dispatching decisions. A sub-
region without cost effective generating capacity during the peak hour would normally 
import from other sub-regions if transmission links are available.  It is clear from the load 
curve that an importing region such as California does not have to import power every 
hour of each day. In fact, in the early morning hours in July, it put excess supply into 
pump storage. Figure 4 shows the seasonal pattern of demand from January 2004 through 
December 2005.  In California, demand in April and May was the lowest, and July and 
August was the highest.  This seasonal demand patterns can affect both maintenance 
decisions as well as seasonal dispatching patterns due to variations in plant availability. 



Demand for power in a typical day depends on economic activities and daily temperature. 
Its components include demand from residential, commercial, industrial, and 
transportation sectors. As a result, weekday activities could be different from weekend 
activities and the level and shape of a 24-hour load curve can also be different.  Ideally, 
two sets of 24-hour load curves should be used to capture the effects of peak load demand 
on dispatching decisions; one for weekdays and the other for weekends.  However, the 
level of efforts in getting the more detailed data may outweigh the benefits of marginal 
improvements in out-of-sample projections.  It is decided that for each sub-region one 24-
hour load curve will be used to represent an average day for each month. 
 
In this model, we use twenty four time series data to represent twenty four demand slices 
for a typical day of a typical month.  For example, hour one of the time series data 
represent hour one demand for all the months in the data base, which can cover time 
periods from January 2005 through the end of RSTEO forecasting period.  The sum of 
these 24 demand slices times the number of days in the month will always equal to a pre-
determined monthly demand, which can be either historical data or projected demand.  
 
2.2.3 Solving for dispatching of fossil plants 
 
This sub-section discusses the solution algorithm, adjustments to the load curve, model 
outputs, and the computing platform.   
 
The solution algorithm for the electricity dispatching model is straightforward; for each 
24-hour time period, regional supply is equated to regional demand.  The equilibrium bin 
number, now a continuous variable, then determines generation by fuel type.  Figure 5 
illustrates the process.  First, the model aggregates oil, gas, and coal supply curves to get 
a total fossil fuel supply curve for a region.  Given a regional demand, the model equates 
supply to demand and solves for equilibrium bin numbers and net generation.  The 
equilibrium bin number then determines generation from oil, gas, and coal plants. 
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Mathematically, the following three equations show monthly supply, demand, and market 
clearing generations. 
  

Supply = ∑ SIJ
 

Where I = coal, gas, diesel fuel, and residual fuel 
   J=sub-regions 
  

Demand = ∑ DJ
 

Supply = Demand 
 
For Texas, there is no sub-region.  Monthly supply is simply the sum of four monthly 
supply curves: coal, gas, diesel fuel, and residual fuel.  The January supply curves will be 
used, in conjunction with a 24-hour daily average January demand, to solve for 24 
generation levels of coal, gas, diesel, and residual fuel.  Daily coal generation is the sum 
of 24 hourly generations, and monthly generation equals daily generation times the 
number of days in the month. 
 
For the Western region, there are three sub-regions: Mountain, Pacific minus California, 
and California.  The monthly regional supply curve is the sum of three sub-regions 
supply of coal, gas, diesel, and residual fuel. The regional 24 hourly demands is the sum 
of demand in these three sub-regions.   For the Eastern region, there are nine sub-regions 
and the calculation is the same as the Western region except the number of sub-regions is 
nine instead of three.  
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Adjustment to the load curves to remove supply of power from hydro, nuclear, renewable, 
and combined heat and power (CHP) is necessary to simplify the dispatching algorithm.  
An ideal approach is to remove the generation of these technologies from the load curve  
according to their dispatching pattern if we know when these technologies are dispatched 
and how much.  For example, we know nuclear power plants probably run continuously 
24 hours a day so we subtract hourly nuclear generation from the 24-hourly load curve.  
For hydro power, we should allocate more generation to peak hours. For solar power, we 
should convert monthly to daily average and allocate generation between late morning to 
late afternoon.  The level of effort required to make the adjustments to fine tune the shape 
of adjusted load curve outweighs improvements in projecting dispatching fossil plants 
because solar generation is very small and wind generation cannot be determined by 
power plant operators.  To simplify the adjustment, we convert monthly non-fossil 
generation to a 24-hour daily average generation curve and subtracting the generation 
from the 24-hour load curve.  The dispatching model uses the adjusted load curves to 
solve for generation of coal, gas, diesel, and residual fuel. 
 
The dispatching model outputs include regional and sub-regional power generation by 
coal, natural gas, diesel fuel, and residual fuel for the forecasting time horizon of 24 to 36 
months.  Fuel use can be computed based on net generation and average heat rate of 
power plants.  In addition, criteria pollutants such as NOx, SOx, and CO2 can be derived 
from fuel consumption. 
 
The model uses EViews software to estimate the coefficients of the supply curves and 
solve the model for generation by fuel type.  It takes about 60 seconds to solve over a 
period of 48 months. 

3. Data Sources 
 
The model is built upon three major data sets collected and published by the U.S. Energy 
Information Administration. These include annual generation capacity, monthly net 
electricity generation, and monthly electricity sales.  Following is a brief description of 
the data sources used to construct the model.  It is important to note that EIA relied on a 
private consulting firm to convert the monthly sales data to 24-hout average daily load 
curves.   
 

• EIA-826: Monthly electric utility sales and revenues reported by states.  Sales 
data is based on billing cycle, which may not coincide with the calendar month. 

• EIA-906: Monthly data on generation and fuel use at the generator or plant level 
by states.   

• EIA-860: Annual generating capacity   by technology and fuel at plant level 

4. Performance of the Model 
 
The current regional electricity model used 2005 annual capacity and monthly 
generations to create monthly electric power supply curves of coal, natural gas, diesel, 
and residual fuel for all 13 regions.  Monthly sales of electricity for 2004, 2005, and 2006 



at the state level are aggregated to the sub-regional level. For each sub-region, monthly 
sales data were then converted to 24-hour load curve.  The model uses hourly load to 
solve for generation by coal, natural gas, diesel fuel, and residual fuel. 
 
Figures 6, 7, and 8 show the model results; they compare projected average daily 
generation from coal and natural gas to their historical counterparts.  Overall, the model 
is capable of capturing the seasonality of electricity markets.  In general, the model has 
the tendency to use more coal and fewer gas and oil fired units.   
 
While projected generations from coal and gas track historical patterns well, projected 
generations from diesel and residual fuel are not very satisfactory.  Several factors may 
contribute to this deficiency. First, dispatching decisions oil based generators may be 
different from that of coal and natural gas; it is very likely that these so-called peak units 
may also be used as transition units to smooth out the changes in load because running a 
large generator as spinning reserve may be more costly if load shape and dispatching 
options can be well defined.  Second, the load curves in each sub-region were aggregated 
from different sub-regions or states. As a result, these curves may have flattened load 
shapes and prevent the model from dispatching correctly. Third, generators may have 
reported inconsistent data to EIA because the relatively small shares of oil-based units in 
the whole generation mix.  Fourth, EIA may have adopted a methodology in the 
estimation of generation for plants which are not in the monthly sample.  An experienced 
model user could make adjustments to the bin numbers assigned to diesel and residual 
fuel units and try to match the historical generation pattern.   However, the fact that oil-
based units are a very small fraction of total generation makes it less attractive to spend 
too much effort to make the improvement. 
 
There are many different measures to evaluate the performance of a model.  The selection 
of measurements, therefore, depends on the intended use of the model.  EIA will use the 
model to provide monthly forecasts and gain insights in the use of natural gas by the 
power generation sector.  EIA will also use the model to simulate the effects of 
unplanned plant outage on generation patterns and trade flows; scenario analysis could 
include the effects of above normal cooling degree days on power generation and use of 
natural gas and petroleum based products.   
 
The goodness of fit of the model can be measured by the mean absolute percentage error 
(MAPE).  Equation 1 shows the computation of MAPE. 
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Where is projected value  tŷ

   yt   is historical value 
   h is number of observations 



 
 

Figure 7: Western Region Coal and Gas Generation
(mwh/day)
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Figure 6: Eastern Region Coal and Gas Generation
(mwh/day)
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Figure 8: Texas Coal and Gas Generation
(mwh/day)
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Figure 8: Texas Coal and Gas Generation
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Table 2 shows the mean absolute percentage error for the Eastern Region, Western 
Region, and Texas.  The MAPE calculated from the 12 months of 2005 for gas are 
2.10%, 2.88%, and 4.14% for Texas, Western Region, and Eastern Region respectively.  
MAPE increased when we include the twelve months of 2004 out of the sample forecast.  
The 24 month MAPE calculated from 2004 and 2005 projections are 3.04%, 3.51% and 
7.44%.  Western Region has the smallest MAPE for coal.  The performance of the 
Eastern region is not as good as the other two regions because of the concentration of 
diesel and residual fuels in the East and the inability of the model to select the 
dispatching patterns satisfactorily. 
 
Another measure of the performance of the model is the cumulative percentage difference 
within the forecasting time horizon.  It is relevant especially for the natural gas market.  If 
natural gas use is consistently above normal, injections into underground storage would 
be below normal. As a result, natural gas prices in the spot and future market may 
increase in anticipation of potential shortages.  In addition to the MAPE, the other 
measure can be twelve month cumulative percentage error.  Equation 2 reports the 
calculation. 
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Table 3 shows the 2005 12-month cumulative percentage difference (CPD).  Texas has 
the smallest CDP.  Both Texas and West have absolute CPD smaller than 1%.  However, 
East shows 2.35% for coal and 4.06% for gas.  For the East, CPD for coal and gas are 
positive and it reflects the model under project generation from diesel and residual fuel. 

Table 2: Mean Absolute Percentage Error
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TexasWestEast
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5. Scenario Analysis 
 
The electricity industry has been going through restructuring since the early 1990s. The 
aging transmission infrastructure and the shifts and changes of new load centers have 
prompt the need to understand the flow of electricity power. This model provides a 
consistent framework to analyze market demand, supply, and trade flows. 
 
The model uses a bottom up approach to solve for power generations consistent with 
demand, generation capacity, and historical generation pattern at an aggregated level such 
as the Eastern and Western regions.  The process is straightforward: first, aggregate the 
demand and supply from sub-regions to regional level and solve for generation and trade 
flows for each sub-regions that clear the aggregate market demand and supply.  Next, use 
the model solution for the sub-regions to get generation and implied trade flow.  Model 
results for a sub-region such as implied trade flow can be used to impose constraints on 
imports and simulate impacts of different demand and supply scenarios on generation 
patterns and use of fossil fuel in the sub-region. 
  
Figures 9 and 10 demonstrate possible generation and trade patterns in the West in July 
2005. The model solution is derived from the Western Region with three sub-regions.  
However, to simplify the analysis, we assume there are only two sub-regions in the West 
instead of three; IMP08_7 is imports of mountain region and IMP10_7 is imports of 
California.  In this case, IMP08_7 is negative and shows hourly exports of power to 
California.  The model results show that the level of California power imports varies by 
the hour and peaks at and around hour 17.  Given an established base case, we can make 
several sensitivity model runs to examine the potential effects of various scenarios on 
generation pattern and fuel use.  Specific scenarios could include the following: 
 

• Raise peak load in California  
• Lower imports  
• Remove generation capacity 

Table 3: 12 month cumulative percentage difference
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These model runs will produce new generation patterns and fuel use.  It could also 
identify if the implied constraint on trade flows causes any difficulties when the demand 
is raised to a level much higher than normal. 
 
Another useful application of the modeling approach is in the analysis of power flows 
and transmission reliability. One of the most challenging tasks facing analysts of 
transmission reliability studies is the lack of consistent power flow data.  Congestion on 
transmission lines is reported. However, it is very difficult to assess the severity of the 
problem.  EIA published a report on transmission data needs a few years ago and it 
received stakeholders’ recognition.  Data collection, however, needs to be more focused 
and it can be done properly only if users of the data understand how the collected data 
will be used.  The regional electricity model provides a consistent framework in linking 
sub-region demand, supply, and trade in a trade zone.  Model solutions can be used to 
identify or impute trade flows at below sub-region level and they could help in the 
analysis of transmission issues.   
 
The model imposes several conditions to the load curve and generation data that should 
provide consistent estimates of the implied power flows.  Equations 3 and 4 specify the 
conditions that the model inputs and solution must meet. Equation 3 specifies that the 
sum of 24 hourly loads in a sub-region must equal an exogenously pre-determined 
monthly demand. Equation 4 says regional generation in each hour must equal regional 
hourly demand. It is the way the model solves for a market clearing demand and 
generation. 
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Figure 10: An Example of Hourly Load, Generation, and Imports for
California, July 2005
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Where D=hourly demand 
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Where  G=hourly generation 

   
Equations 5 and 6 show that the model solution can provide useful insights on maximum 
power flow if power generation in a sub-region matches well with the historical data.  
Equation 5 states that if generation in a sub-region matches closely to historical data, it 
should provide useful insights on the hourly dispatching pattern of power plants in the 
regions.  As a result, the maximum difference between hourly load and generation could 
provide information on possible limits on transmission limits. 
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)( hh GDabsMax −   for h=1 through 24    (6) 

 
 
In the current model, sub-region 8 is the census Mountain region, which consists of eight 
states.  In the previous example on the trade between California and Mountain region, 
one may ask about the trade flows within the Mountain regions and to California.  Given 
the current model framework, we can use power exports from a model run from the 
Western Region to adjust the Mountain region hourly demand.  We can use the state load 
data and state supply curves to solve for hourly generation.  A calibrated model run for 
the Mountain region will report generation and power flows within the mountain region. 
These imputed power flow data can then be compared with transmission data collected 
by the EIA. Note that reported data on generation and sales in each state provide a 
glimpse of the possible import/export of power.  However, the non-linear characteristics 
of load and supply curves make it difficult to pinpoint the level of imports during peak 
demand hours when potential bottlenecks in supply and the delivering system can be 
encountered.  As a result, the simulation approach can provide more valuable insights on 
potential bottlenecks. 
 
In the areas of studying constraints of criteria pollutants on power generation, the data 
base of this model can be linked directly to the capacity of individual power plants. The 
model can calculate cumulative emissions associated with each supply curve.  Coal 



supply curves can be adjusted to reflect the constraints of emissions of criteria pollutants 
on generating capacity. 

6. Summary  
 
The modeling approach adopted in this paper provides consistent projections of 
generations from coal and natural gas.  Using 2005 generation and capacity data, the 
model could project coal and natural use with good results.  The mean absolute 
percentage error ranges from 1.92% to 4.15% for the 12 months of 2005. The MAPE 
ranges from 2.44% to 7.44% when we include the out of sample forecast of 2004 data. 
Twelve month cumulative percentage differences for 2005 are also good; they range from 
less than 1% to about 4%. 
 
The model can be improved if the model can get insight into the use of residual and 
diesel fuel. A modeler can change bin assignments for generators burning residual fuel 
and diesel and raised the level of generation from these two fuels.  As a result, the 
performance in the East can improve further. The model can be further improved if the 
effects of fuel costs on dual-fueled generations can be captured more appropriately. 
 
In addition to forecasting, the modeling framework can be used to conduct scenario 
analysis and provide insights on the flows of power between states. 
 
 
 
 
Questions for the ASA Energy Committee 
 
 
A few sub-regions in the East have generators that can switch from gas to oil or vice 
versa. The adopted modeling methodology uses observed dispatching patterns as proxies 
to supply curves.  There are needs to estimate a switching variable to capture the effects 
of gas and oil prices on gas and oil use if we want to improve the performance of the 
model. 
 
Should we incorporate the fuel switching in the model structure?  Alternatively, Is it 
appropriate to make adjustments to the model solution based on empirically estimated 
changes in oil-gas share? 
 


	Modeling Regional Electricity Generation
	 Modeling Regional Electricity Generation
	Abstract
	1. Introduction
	2. The EIA Regional Electricity Dispatching Model  
	3. Data Sources
	4. Performance of the Model
	 5. Scenario Analysis
	6. Summary 


